Blocking Ca2+ Channel β3 Subunit Reverses Diabetes

阻断 Ca2+ 通道 β3 亚基可逆转糖尿病

阅读:5
作者:Kayoung Lee, Jaeyoon Kim, Martin Köhler, Jia Yu, Yue Shi, Shao-Nian Yang, Sung Ho Ryu, Per-Olof Berggren

Abstract

Voltage-gated Ca2+ channels (Cav) are essential for pancreatic beta cell function as they mediate Ca2+ influx, which leads to insulin exocytosis. The β3 subunit of Cav (Cavβ3) has been suggested to regulate cytosolic Ca2+ ([Ca2+]i) oscillation frequency and insulin secretion under physiological conditions, but its role in diabetes is unclear. Here, we report that islets from diabetic mice show Cavβ3 overexpression, altered [Ca2+]i dynamics, and impaired insulin secretion upon glucose stimulation. Consequently, in high-fat diet (HFD)-induced diabetes, Cavβ3-deficient (Cavβ3-/-) mice showed improved islet function and enhanced glucose tolerance. Normalization of Cavβ3 expression in ob/ob islets by an antisense oligonucleotide rescued the altered [Ca2+]i dynamics and impaired insulin secretion. Importantly, transplantation of Cavβ3-/- islets into the anterior chamber of the eye improved glucose tolerance in HFD-fed mice. Cavβ3 overexpression in human islets also impaired insulin secretion. We thus suggest that Cavβ3 may serve as a druggable target for diabetes treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。