RNA Binding Proteins Control Transdifferentiation of Hepatic Stellate Cells into Myofibroblasts

RNA 结合蛋白控制肝星状细胞向肌成纤维细胞的转分化

阅读:5
作者:Sihyung Wang, Youngmi Jung, Jeongeun Hyun, Matthew Friedersdorf, Seh-Hoon Oh, Jieun Kim, Richard T Premont, Jack D Keene, Anna Mae Diehl

Aims

Myofibroblasts (MF) derived from quiescent nonfibrogenic hepatic stellate cells (HSC) are the major sources of fibrous matrix in cirrhosis. Because many factors interact to regulate expansion and regression of MF-HSC populations, efforts to prevent cirrhosis by targeting any one factor have had limited success, motivating research to identify mechanisms that integrate these diverse inputs. As key components of RNA regulons, RNA binding proteins (RBPs) may fulfill this function by orchestrating changes in the expression of multiple genes that must be coordinately regulated to affect the complex phenotypic modifications required for HSC transdifferentiation.

Background/aims

Myofibroblasts (MF) derived from quiescent nonfibrogenic hepatic stellate cells (HSC) are the major sources of fibrous matrix in cirrhosis. Because many factors interact to regulate expansion and regression of MF-HSC populations, efforts to prevent cirrhosis by targeting any one factor have had limited success, motivating research to identify mechanisms that integrate these diverse inputs. As key components of RNA regulons, RNA binding proteins (RBPs) may fulfill this function by orchestrating changes in the expression of multiple genes that must be coordinately regulated to affect the complex phenotypic modifications required for HSC transdifferentiation.

Conclusions

The aggregate results indicate that HSC transdifferentiation is ultimately dictated by Igf2bp3-dependent RNA regulons and thus, can be controlled simply by manipulating Igf2bp3.

Methods

We profiled the transcriptomes of quiescent and MF-HSC to identify RBPs that were differentially-expressed during HSC transdifferentiation, manipulated the expression of the most significantly induced RBP, insulin like growth factor 2 binding protein 3 (Igf2bp3), and evaluated transcriptomic and phenotypic effects.

Results

Depleting Igf2bp3 changed the expression of thousands of HSC genes, including multiple targets of TGF-β signaling, and caused HSCs to reacquire a less proliferative, less myofibroblastic phenotype. RNA immunoprecipitation assays demonstrated that some of these effects were mediated by direct physical interactions between Igf2bp3 and mRNAs that control proliferative activity and mesenchymal traits. Inhibiting TGF-β receptor-1 signaling revealed a microRNA-dependent mechanism that induces Igf2bp3. Conclusions: The aggregate results indicate that HSC transdifferentiation is ultimately dictated by Igf2bp3-dependent RNA regulons and thus, can be controlled simply by manipulating Igf2bp3.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。