Herpes Simplex Virus 1 γ134.5 Protein Inhibits STING Activation That Restricts Viral Replication

单纯疱疹病毒 1 γ134.5 蛋白抑制 STING 激活,从而限制病毒复制

阅读:5
作者:Shuang Pan, Xing Liu, Yijie Ma, Youjia Cao, Bin He

Abstract

The γ134.5 gene of herpes simplex virus 1 (HSV-1) encodes a virulence factor that promotes viral pathogenesis. Although it perturbs TANK-binding kinase 1 (TBK1) in the complex network of innate immune pathways, the underlying mechanism is obscure. Here we report that HSV-1 γ134.5 targets stimulator of interferon genes (STING) in the intracellular DNA recognition pathway that regulates TBK1 activation. In virus-infected cells the γ134.5 protein associates with and inactivates STING, which leads to downregulation of interferon regulatory factor 3 (IRF3) and IFN responses. Importantly, HSV-1 γ134.5 disrupts translocation of STING from the endoplasmic reticulum to Golgi apparatus, a process necessary to prime cellular immunity. Deletion of γ134.5 or its amino-terminal domain from HSV-1 abolishes the observed inhibitory activities. Consistently, an HSV mutant that lacks functional γ134.5 replicated less efficiently in STING+/+ than in STING-/- mouse embryonic fibroblasts. Moreover, reconstituted expression of human STING in the STING-/- cells activated IRF3 and reduced viral growth. These results suggest that control of the DNA sensing pathway by γ134.5 is advantageous to HSV infection.IMPORTANCE Viral inhibition of innate immunity contributes to herpes simplex virus pathogenesis. Although this complex process involves multiple factors, the underlying events remain unclear. We demonstrate that an HSV virulence factor γ134.5 precludes the activation of STING, a central adaptor in the intracellular DNA sensing pathway. Upon HSV infection, this viral protein engages with and inactivates STING. Consequently, it compromises host immunity and facilitates HSV replication. These observations uncover an HSV mechanism that is likely to mediate viral virulence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。