Casticin suppresses the carcinogenesis of small cell lung cancer H446 cells through activation of AMPK/FoxO3a signaling

紫花苜蓿素通过激活AMPK/FoxO3a信号抑制小细胞肺癌H446细胞的致癌作用

阅读:5
作者:Qian Gong, Xiaozheng Cao, Jianguo Cao, Xiaohong Yang, Wenbin Zeng

Abstract

Casticin, a natural polymethoxyflavone isolated from A. annua, V. trifolia, and V. agnus‑castus induces apoptosis in cancer cells by activating FoxO3a. However, whether casticin inhibits in vitro carcinogenesis and cancer stem cell (CSC) characteristics, and whether casticin activates FoxO3a in small cell lung cancer (SCLC) cells remain unclear. We here demonstrated that casticin decreased sphere‑ and colony‑formation capabilities, and downregulated uPAR and CD133 in second‑generation spheres, which were considered as lung cancer stem‑like cells (LCSLCs), from SCLC H446 cells, in a concentration‑dependent manner. In addition, casticin dose‑dependently elevated the phosphorylation levels of AMPK and ACC, and reduced p‑FoxO3a expression. The above effects were attenuated by AMPK knockdown with small interfering RNAs (siRNAs). FoxO3a silencing resulted in decreased protein expression of FoxO3a, increased in vitro carcinogenesis and CSC characteristics, with no appreciable effects on AMPK and ACC phosphorylation, and displayed similar activities to those neutralizing the effects of casticin on in vitro carcinogenesis and CSC characteristics. These findings reveal a novel mechanism for regulating AMPK/FoxO3a signaling in response to casticin, suggesting a new strategy for SCLC therapy by targeting cancer stem‑like cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。