A next-generation Fab library platform directly yielding drug-like antibodies with high affinity, diversity, and developability

直接产生具有高亲和力、多样性和可开发性的类药物抗体的下一代 Fab 库平台

阅读:5
作者:Fortunato Ferrara, Adeline Fanni, Andre A R Teixeira, Esteban Molina, Camila Leal-Lopes, Ashley DeAguero, Sara D'Angelo, M Frank Erasmus, Laura Spector, Luis Antonio Rodriguez Carnero, Jianquan Li, Thomas J Pohl, Nikolai Suslov, Klervi Desrumeaux, Conor McMahon, Sagar Kathuria, Andrew R M Bradbury

Abstract

We previously described an in vitro single-chain fragment (scFv) library platform originally designed to generate antibodies with excellent developability properties. The platform design was based on the use of clinical antibodies as scaffolds into which replicated natural complementarity-determining regions purged of sequence liabilities were inserted, and the use of phage and yeast display to carry out antibody selection. In addition to being developable, antibodies generated using our platform were extremely diverse, with most campaigns yielding sub-nanomolar binders. Here, we describe a platform advancement that incorporates Fab phage display followed by single-chain antibody-binding fragment Fab (scFab) yeast display. The scFab single-gene format provides balanced expression of light and heavy chains, with enhanced conversion to IgG, thereby combining the advantages of scFvs and Fabs. A meticulously engineered, quality-controlled Fab phage library was created using design principles similar to those used to create the scFv library. A diverse panel of binding scFabs, with high conversion efficiency to IgG, was isolated against two targets. This study highlights the compatibility of phage and yeast display with a Fab semi-synthetic library design, offering an efficient approach to generate drug-like antibodies directly, facilitating their conversion to potential therapeutic candidates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。