Cutaneous antimicrobial peptides: New "actors" in pollution related inflammatory conditions

皮肤抗菌肽:污染相关炎症的新“参与者”

阅读:4
作者:Brittany Woodby, Erika Pambianchi, Francesca Ferrara, Jean-Philippe Therrien, Alessandra Pecorelli, Nicolo' Messano, Mary Ann Lila, Giuseppe Valacchi

Abstract

Ozone (O3) exposure has been reported to contribute to various cutaneous inflammatory conditions, such as eczema, psoriasis, rush etc. via a redox-inflammatory pathway. O3 is too reactive to penetrate cutaneous tissue; it interacts with lipids present in the outermost layer of skin, resulting in formation of oxidized molecules and hydrogen peroxide (H2O2). Interestingly, several inflammatory skin pathologies demonstrate altered levels of antimicrobial peptides (AMPs). These small, cationic peptides are found in various cells, including keratinocytes, eccrine gland cells, and seboctyes. Classically, AMPs function as antimicrobial agents. Recent studies indicate that AMPs also play roles in inflammation, angiogenesis, and wound healing. Since altered levels of AMPs have been detected in pollution-associated skin pathologies, we hypothesized that exposure to O3 could affect the levels of AMPs in the skin. We examined levels of AMPs using qRT-PCR, Western blotting, and immunofluorescence in vitro (human keratinocytes), ex vivo (human skin explants), and in vivo (human volunteer subjects exposed to O3) and observed increased levels of all the measured AMPs upon O3 exposure. In addition, in vitro studies have confirmed the redox regulation of AMPs in keratinocytes. This novel finding suggests that targeting AMPs could be a possible defensive strategy to combat pollution-associated skin conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。