Hydrogen sulfide alleviates particulate matter-induced emphysema and airway inflammation by suppressing ferroptosis

硫化氢通过抑制铁死亡减轻颗粒物引起的肺气肿和呼吸道炎症

阅读:4
作者:Ying Wang, Sha Liao, Zihan Pan, Simin Jiang, Jing Fan, Siwang Yu, Lixiang Xue, Jianling Yang, Shaohua Ma, Tong Liu, Jing Zhang, Yahong Chen

Background

Redox imbalance is an vital mechanism for COPD. At present, insufficient researches have been conducted on the protective effect of hydrogen sulfide (H2S) on PM-induced COPD. However, whether H2S exerts the anti-injury role by blocking ferroptosis and restoring redox equilibrium remain to be investigated.

Conclusion

This research suggested that H2S alleviated PM-induced emphysema and airway inflammation via restoring redox balance and inhibiting ferroptosis through regulating Nrf2-PPAR-ferritinophagy signaling pathway.

Methods

Human lung tissue samples were collected for IHC staining, and the expressions of Nrf2, ferritinophagy- and ferroptosis-related proteins were observed. The WT C57BL/6 and Nrf2 knockout mice models were established with PM(200 μg per mouse). NaHS(Exogenous H2S) was injected intraperitoneally 30 min in advance. Twenty-nine days later, mice lung tissues were evaluated by HE's and PERLS-DAB's staining. Meanwhile, inflammation and oxidative stress indicators and iron levels were assessed by corresponding ELISA kit. Related protein expressions were detected through Western blot. BEAS-2B cells with or without H2S were exposed to PM2.5 for 36 h. Cell viability, mitochondrial morphology, inflammatory cytokines, antioxidant factors, iron levels, autophagic flux and the levels of ROS, LIP ROS, MitoROS, MMP, as well as related protein expressions were detected by specific methods, respectively. In addition, V5-Nrf2, Nrf2 siRNA, Nrf2 inhibitor ML385, PPAR-γ inhibitor GW9662, autophagy inhibitor CQ, iron chelator DFO and ferroptosis inhibitor Fer-1 were used to verify the target signaling pathways.

Results

We found that the expressions of LIP ROS, ROS, COX2, MDA and other oxidative factors increased, while the antioxidant markers GPX4, GSH and GSH-Px significantly decreased, as well as active iron accumulation in COPD patients, PM-exposured WT and Nrf2-KO mice models and PM2.5-mediated cell models. NaHS pretreatment markedly inhibited PM-induced emphysema and airway inflammation by alleviating ferroptotic changes in vivo and vitro. With the use of V5-Nrf2 overexpression plasmid, Nrf2 siRNA and pathway inhibitors, we found NaHS activates the expressions of Nrf2 and PPAR-γ, and inhibites ferritinophagy makers LC3B, NCOA4 and FTH1 in BEAS-2B cells. Moreover, the anti-ferroptotic effect of NaHS was further verified to be related to the activation of Nrf2 signal in MEF cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。