Theoretical and experimental studies on uranium(vi) adsorption using phosphine oxide-coated magnetic nanoadsorbent

氧化膦包覆磁性纳米吸附剂对铀(vi)吸附的理论与实验研究

阅读:5
作者:Zeinab F Akl

Abstract

In this study, novel Cyanex-923-coated magnetite nanoparticles (Fe3O4@Cyanex-923) were prepared, comprehensively characterized, and employed for uranium(vi) ion adsorption from aqueous solutions. FTIR and TGA data confirmed that Fe3O4 has successfully gained Cyanex-923 surface functionality. Particle size and morphological studies via DLS, HR-TEM, and SEM showed uniform-dispersed quasi-spherical nanoparticles with a mean diameter of ca. 44 nm. Magnetism measurement data revealed the superparamagnetic properties of the Fe3O4@Cyanex-923 nanoadsorbent. The effect of different experimental settings on the adsorption efficiency was studied to determine the best operational conditions. The experimental results were analyzed using Langmuir, Freundlich, and Temkin isotherms; where the adsorption data obeyed the Langmuir model showing a theoretical adsorption capacity of 429.185 mg g-1 at 298 K. Kinetics data analysis revealed a fast adsorption process that could reach equilibrium within 60 min and is well-fitted to the pseudo-2nd-order model. Temperature affected the adsorption process and the thermodynamic data indicated that uranium(vi) adsorption was spontaneous and exothermic. Fe3O4@Cyanex-923 nanoparticles displayed a good regeneration behavior over three sequential adsorption-desorption cycles. The Fe3O4@Cyanex-923 nanoadsorbent showed a high uranium adsorption capacity, fast equilibration time, economic nature, good reusability, and easy separation; making it a promising candidate for uranium(vi) removal from nuclear waste streams.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。