Cu-doped Nd0.6Sr0.4Co1- xCuxO3- δ (x = 0, 0.05, 0.1, 0.15, 0.2) as the cathode for intermediate-temperature solid oxide fuel cells

Cu 掺杂的 Nd0.6Sr0.4Co1-xCuxO3-δ(x = 0、0.05、0.1、0.15、0.2)作为中温固体氧化物燃料电池的阴极

阅读:5
作者:Xu Du, Songbo Li, Shengli An, Liangmei Xue, Yang Ni

Abstract

Nd0.6Sr0.4Co1-xCuxO3-δ (x = 0, 0.05, 0.1, 0.15, 0.2) (NSCCx) was prepared by replacing Co with Cu. Its chemical compatibility, electrical conductivity, and electrochemical properties were studied by X-ray powder diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. The conductivity, AC impedance spectra, and output power of the single cell were tested in an electrochemical workstation. Results showed that the thermal expansion coefficient (TEC) and electrical conductivity of the sample decreased with the increase in Cu content. The TEC of NSCC0.1 decreased by 16.28% in the temperature range of 35 °C-800 °C, and its conductivity was 541 S cm-1 at 800 °C. Furthermore, a single cell was constructed with NSCCx as the cathode, NiO-GDC as the anode, and GDC as the electrolyte. The peak power of the cell at 800 °C was 444.87 mW·cm-2, which was similar to that of the undoped sample. Compared with the undoped NSCC, NSCC0.1 showed lower TEC while maintaining its output power. Therefore, this material can be used as a cathode for solid oxide fuel cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。