Silencing of ATP2B1-AS1 contributes to protection against myocardial infarction in mouse via blocking NFKBIA-mediated NF-κB signalling pathway

沉默 ATP2B1-AS1 有助于通过阻断 NFKBIA 介导的 NF-κB 信号通路预防小鼠心肌梗死

阅读:4
作者:Kai-You Song, Xian-Zhao Zhang, Feng Li, Qing-Rong Ji

Abstract

Myocardial infarction (MI) is an acute coronary syndrome that refers to tissue infarction of the myocardium. This study aimed to investigate the effect of long intergenic non-protein-coding RNA (lincRNA) ATPase plasma membrane Ca2+ transporting 1 antisense RNA 1 (ATP2B1-AS1) against MI by targeting nuclear factor-kappa-B inhibitor alpha (NFKBIA) and mediating the nuclear factor-kappa-B (NF-κB) signalling pathway. An MI mouse model was established and idenepsied by cardiac function evaluation. It was determined that ATP2B1-AS1 was highly expressed, while NFKBIA was poorly expressed and NF-κB signalling pathway was activated in MI mice. Cardiomyocytes were extracted from mice and introduced with a series of mouse ATP2B1-AS1 vector, NFKBIA vector, siRNA-mouse ATP2B1-AS1 and siRNA-NFKBIA. The expression of NF-κBp50, NF-κBp65 and IKKβ was determined to idenepsy whether ATP2B1-AS1 and NFKBIA affect the NF-κB signalling pathway, the results of which suggested that ATP2B1-AS1 down-regulated the expression of NFKBIA and activated the NF-κB signalling pathway in MI mice. Based on the data from assessment of cell viability, cell cycle, apoptosis and levels of inflammatory cytokines, either silencing of mouse ATP2B1-AS1 or overexpression of NFKBIA was suggested to result in reduced cardiomyocyte apoptosis and expression of inflammatory cytokines, as well as enhanced cardiomyocyte viability. Our study provided evidence that mouse ATP2B1-AS1 silencing may have the potency to protect against MI in mice through inhibiting cardiomyocyte apoptosis and inflammation, highlighting a great promise as a novel therapeutic target for MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。