De novo myelodysplastic syndrome in a Rothmund-Thomson Syndrome patient with novel pathogenic RECQL4 variants

患有 Rothmund-Thomson 综合征且携带新型致病性 RECQL4 变异的患者出现新生骨髓增生异常综合征

阅读:6
作者:Chuanhe Jiang, Hao Zhang, Chuxian Zhao, Luxiang Wang, Xiaoxia Hu, Zengkai Pan

Abstract

Rothmund-Thomson syndrome (RTS) is a rare autosomal-recessive disorder with clinical features consisting of rash, poikiloderma, sparse hair, short stature, juvenile cataracts, skeletal abnormalities, and cancer predisposition. Genetic studies involving detection of pathogenic RECQL4 variants provide the diagnostic certitude. Osteosarcoma was found in two-thirds RECQL4-mutated RTS patients, while hematological malignancies were rarely reported. The variant diversity of RECQL4 gene has not been fully identified and mutations associated with hematologic malignancies are not well described. In this study, we presented a pedigree of RTS from a Chinese family, among which the proband was diagnosed with de novo myelodysplastic syndrome (MDS). Comprehensive medical examination and chromosome karyotyping were performed on the proband. Whole exome sequencing (WES) was performed on the proband, his sister and his mother. The familial cosegregation of sequence variants derived from WES was conducted by polymerase chain reaction-based Sanger sequencing. Structures of candidate RECQL4 mutants were done by in silico analysis to assess pathogenicity. Three novel RECQL4 germline variants, including c.T274C, c.G3014A, and c.G801C, were identified by WES and validated by Sanger sequencing. Prediction of conformation indicated that the structural stability of human RECQL4 protein was largely affected with these variants. The co-occurring U2AF1 p.S34F and TP53 p.Y220C mutations might contribute to the development of MDS. Our study expands the mutational spectrum of RECQL4 and provides underlying molecular mechanism for the development of MDS in RTS patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。