Role of mitochondrial fission-related genes in mitochondrial morphology and energy metabolism in mouse embryonic stem cells

线粒体分裂相关基因在小鼠胚胎干细胞线粒体形态和能量代谢中的作用

阅读:1
作者:Bong Jong Seo ,Joonhyuk Choi ,Hyeonwoo La ,Omer Habib ,Youngsok Choi ,Kwonho Hong ,Jeong Tae Do

Abstract

Mitochondria, the major organelles that produce energy for cell survival and function, dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. The details of the underlying mechanism of mitochondrial dynamics have not yet been elucidated. Here, we aimed to investigate the function of mitochondrial fission genes in embryonic stem cells (ESCs). To this end, we generated homozygous knockout ESC lines, namely, Fis1-/-, Mff-/-, and Dnm1l-/- ESCs, using the CRISPR-Cas9 system. Interestingly, the Fis1-/-, Mff-/-, and Dnm1l-/- ESCs showed normal morphology, self-renewal, and the ability to differentiate into all three germ layers in vitro. However, transmission electron microscopy showed a significant increase in the cytoplasm to nucleus ratio and mitochondrial elongation in Dnm1l-/- ESCs, which was due to incomplete fission. To assess the change in metabolic energy, we analyzed oxidative phosphorylation (OXPHOS), glycolysis, and the intracellular ATP concentration. The ESC knockout lines showed an increase in OXPHOS, decrease in glycolysis, and an increase in intracellular ATP concentration, which was related to mitochondrial elongation. In particular, the Dnm1l knockout most significantly affected mitochondrial morphology, energy metabolism, and ATP production in ESCs. Furthermore, RNA sequencing and gene ontology analysis showed that the differentially expressed genes in Mff-/- ESCs were distinct from those in Dnm1l-/- or Fis1-/- ESCs. In total, five metabolism-related genes, namely, Aass, Cdo1, Cyp2b23, Nt5e, and Pck2, were expressed in all three knockout ESC lines, and three of them were associated with regulation of ATP generation. Keywords: Cellular metabolism; Dynamin 1 like (Dnm1l); Embryonic stem cells (ESCs); Knockout; Mitochondrial fission 1 protein (Fis1); Mitochondrial fission factor (Mff).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。