Intracellular regulation of the insect chemoreceptor complex impacts odour localization in flying insects

昆虫化学感受器复合物的细胞内调节影响飞行昆虫的气味定位

阅读:5
作者:Merid N Getahun, Michael Thoma, Sofia Lavista-Llanos, Ian Keesey, Richard A Fandino, Markus Knaden, Dieter Wicher, Shannon B Olsson, Bill S Hansson

Abstract

Flying insects are well known for airborne odour tracking and have evolved diverse chemoreceptors. While ionotropic receptors (IRs) are found across protostomes, insect odorant receptors (ORs) have only been identified in winged insects. We therefore hypothesized that the unique signal transduction of ORs offers an advantage for odour localization in flight. Using Drosophila, we found expression and increased activity of the intracellular signalling protein PKC in antennal sensilla following odour stimulation. Odour stimulation also enhanced phosphorylation of the OR co-receptor Orco in vitro, while site-directed mutation of Orco or mutations in PKC subtypes reduced the sensitivity and dynamic range of OR-expressing neurons in vivo, but not IR-expressing neurons. We ultimately show that these mutations reduce competence for odour localization of flies in flight. We conclude that intracellular regulation of OR sensitivity is necessary for efficient odour localization, which suggests a mechanistic advantage for the evolution of the OR complex in flying insects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。