GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract

GLP-1 神经元在啮齿动物孤束核内形成局部突触回路

阅读:5
作者:J Patrick Card, Aaron L Johnson, Ida J Llewellyn-Smith, Huiyuan Zheng, Rishi Anand, Daniel I Brierley, Stefan Trapp, Linda Rinaman

Abstract

Glutamatergic neurons that express pre-proglucagon (PPG) and are immunopositive (+) for glucagon-like peptide-1 (i.e., GLP-1+ neurons) are located within the caudal nucleus of the solitary tract (cNTS) and medullary reticular formation in rats and mice. GLP-1 neurons give rise to an extensive central network in which GLP-1 receptor (GLP-1R) signaling suppresses food intake, attenuates rewarding, increases avoidance, and stimulates stress responses, partly via GLP-1R signaling within the cNTS. In mice, noradrenergic (A2) cNTS neurons express GLP-1R, whereas PPG neurons do not. In this study, confocal microscopy in rats confirmed that prolactin-releasing peptide (PrRP)+ A2 neurons are closely apposed by GLP-1+ axonal varicosities. Surprisingly, GLP-1+ appositions were also observed on dendrites of PPG/GLP-1+ neurons in both species, and electron microscopy in rats revealed that GLP-1+ boutons form asymmetric synaptic contacts with GLP-1+ dendrites. However, RNAscope confirmed that rat GLP-1 neurons do not express GLP-1R mRNA. Similarly, Ca2+ imaging of somatic and dendritic responses in mouse ex vivo slices confirmed that PPG neurons do not respond directly to GLP-1, and a mouse crossbreeding strategy revealed that <1% of PPG neurons co-express GLP-1R. Collectively, these data suggest that GLP-1R signaling pathways modulate the activity of PrRP+ A2 neurons, and also reveal a local "feed-forward" synaptic network among GLP-1 neurons that apparently does not use GLP-1R signaling. This local GLP-1 network may instead use glutamatergic signaling to facilitate dynamic and potentially selective recruitment of GLP-1 neural populations that shape behavioral and physiological responses to internal and external challenges.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。