Impact of thyroid hormone perturbations in adult mice: brain weight and blood vessel changes, gene expression variation, and neurobehavioral outcomes

甲状腺激素紊乱对成年小鼠的影响:脑重量和血管变化、基因表达变异和神经行为结果

阅读:12
作者:Dana M Niedowicz, Wang-Xia Wang, Douglas A Price, Kevin Xie, Ela Patel, Peter T Nelson

Abstract

Mouse models of hyper- and hypothyroidism were used to examine the effects of thyroid hormone (TH) dyshomeostasis on the aging mammalian brain. 13-14 month-old mice were treated for 4months with either levothyroxine (hyperthyroid) or a propylthiouracil and methimazole combination (PTU/Met; hypothyroid). Hyperthyroid mice performed better on Morris Water Maze than control mice, while hypothyroid mice performed worse. Brain weight was increased in thyroxine-treated, and decreased in PTU/Met-treated animals. The brain weight change was strongly correlated with circulating and tissue T4. Quantitative measurements of microvessels were compared using digital neuropathologic methods. There was an increase in microvessel area in hyperthyroid mice. Hypothyroid mice showed a trend for elevated glial fibrillary acidic protein-immunoreactive astrocytes, indicating an increase in neuroinflammation. Gene expression alterations were associated with TH perturbation and astrocyte-expressed transcripts were particularly affected. For example, expression of Gli2 and Gli3, mediators in the Sonic Hedgehog signaling pathway, were strongly impacted by both treatments. We conclude that TH perturbations produce robust neurobehavioral, pathological, and brain gene expression changes in aging mouse models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。