Study of the influence of 2.5% Mg2+ insertion in the B-site of La0.8Ca0.1Pb0.1FeO3 on its structural, electrical and dielectric properties

La0.8Ca0.1Pb0.1FeO3 B位2.5%Mg2+插入对其结构、电学和介电性能的影响研究

阅读:6
作者:H Issaoui, A Benali, F Issaoui, E Dhahri, B F O Costa, M P F Graca, M A Valente, Mohamed Lamjed Bouazizi

Abstract

This work involves the synthesis and study of physical properties of the La0.8Ca0.1Pb0.1Fe0.975Mg0.025O3 compound, which has been characterized by various experimental techniques, such as X-ray diffraction, SEM and complex impedance spectroscopy. The structural study showed that the La0.8Ca0.1Pb0.1Fe0.975Mg0.025O3 compound crystallized in the orthorhombic structure with the Pnma space group. The particle size and the surface morphology of this compound have been analysed using SEM. The particle size was found to be around 120 nm and we confirmed that one particle contains more than one crystallite. Importantly, the studied compound presented a giant dielectric permittivity (ε' of around 9 × 104 at high temperature and low frequencies). An equivalent electric circuit has been deduced from the Nyquist plots of the complex impedance parts (Z'' vs. Z') to correctly describe the electrical behavior of the La0.8Ca0.1Pb0.1Fe0.975Mg0.025O3 compound. The chosen circuit consists of two cells mounted in series corresponding to the grain and grain boundary contributions. The electrode contribution has been detected from the frequency dependence of the imaginary part of modulus where the activation energy of each constitution has been calculated. The relaxation process and the electrical conductivity are attributed to the same type of charge carriers characterized by similar values of the activation energy determined from loss factor tangent (tg(δ)), the imaginary part of the permittivity and the modulus spectrum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。