Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus

通过下丘脑的组胺能神经元自上而下地调节视网膜代码

阅读:5
作者:Rebekah A Warwick, Serena Riccitelli, Alina S Heukamp, Hadar Yaakov, Bani Prasad Swain, Lea Ankri, Jonathan Mayzel, Noa Gilead, Reut Parness-Yossifon, Stefano Di Marco, Michal Rivlin-Etzion

Abstract

The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。