Necroptosis-blocking compound NBC1 targets heat shock protein 70 to inhibit MLKL polymerization and necroptosis

阻断坏死性凋亡的化合物 NBC1 靶向热休克蛋白 70,以抑制 MLKL 聚合和坏死性凋亡

阅读:6
作者:Andrea N Johnston, Yuyong Ma, Hua Liu, Shuzhen Liu, Sarah Hanna-Addams, She Chen, Chuo Chen, Zhigao Wang

Abstract

Necroptosis is a regulated necrotic cell death pathway involved in development and disease. Its signaling cascade results in the formation of disulfide bond-dependent amyloid-like polymers of mixed lineage kinase domain-like protein (MLKL), which mediate proinflammatory cell membrane disruption. We screened compound libraries provided by the National Cancer Institute and identified a small-molecule inhibitor of necroptosis named necroptosis-blocking compound 1 (NBC1). Biotin-labeled NBC1 specifically conjugates to heat shock protein Hsp70. NBC1 and PES-Cl, a known Hsp70 substrate-binding inhibitor, block the formation of MLKL polymers, but not MLKL tetramers in necroptosis-induced cells. In vitro, recombinant Hsp70 interacts with the N-terminal domain (NTD) of MLKL and promotes NTD polymerization, which has been shown to mediate the cell killing activity. Furthermore, the substrate-binding domain (SBD) of Hsp70 is sufficient to promote MLKL polymerization. NBC1 covalently conjugates cysteine 574 and cysteine 603 of the SBD to block its function. In addition, an SBD mutant with both cysteines mutated to serines loses its ability to promote MLKL polymerization. Interestingly, knockdown of Hsp70 in cells leads to MLKL destabilization, suggesting that MLKL might also be a client protein of Hsp70. In summary, using NBC1, an inhibitor of necroptosis, we identified Hsp70 as a molecular chaperone performing dual functions in necroptosis. It stabilizes MLKL protein under normal condition and promotes MLKL polymerization through its substrate-binding domain during necroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。