Ultrasound-mediated synthesis of nanoporous fluorite-structured high-entropy oxides toward noble metal stabilization

超声波介导合成纳米多孔萤石结构高熵氧化物以实现贵金属稳定

阅读:8
作者:Francis Okejiri, Juntian Fan, Zhennan Huang, Kevin Michael Siniard, Miaofang Chi, Felipe Polo-Garzon, Zhenzhen Yang, Sheng Dai

Abstract

High-entropy oxides (HEOs) are an emerging class of advanced ceramic materials capable of stabilizing ultrasmall nanoparticle catalysts. However, their fabrication still relies on high-temperature thermal treatment methodologies affording nonporous architectures. Herein, we report a facile synthesis of single-phase, fluorite-structured HEO nanocrystals via an ultrasound-mediated co-precipitation strategy under ambient conditions. Within 15 min of ultrasound exposure, high-quality fluorite-structured HEO (CeHfZrSnErOx) was generated as ultrasmall-sized particles with high surface area and high oxygen vacancy concentration. Taking advantage of these unique structural features, palladium was introduced and stabilized in the form of highly dispersed Pd nanoclusters within the CeHfZrSnErOx architecture. Neither phase segregation of the CeHfZrSnErOx support nor Pd sintering was observed under thermal treatment up to 900°C. The as-afforded Pd/CeHfZrSnErOx catalyst exhibits good catalytic performance toward CO oxidation, outperforming Pd/CeO2 of the same Pd loading, which highlights the inherent advantage of CeHfZrSnErOx as carrier support over traditional oxides.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。