Dexmedetomidine Mitigates Microglial Activation Associated with Postoperative Cognitive Dysfunction by Modulating the MicroRNA-103a-3p/VAMP1 Axis

右美托咪啶通过调节 MicroRNA-103a-3p/VAMP1 轴减轻与术后认知功能障碍相关的小胶质细胞活化

阅读:5
作者:Zhichao Wu, Han Wang, Zuan Shi, Yalan Li

Abstract

Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。