Evolution of rough-surface geometry and crystalline structures of aligned TiO2 nanotubes for photoelectrochemical water splitting

用于光电化学水分解的定向 TiO2 纳米管粗糙表面几何形状和晶体结构的演变

阅读:5
作者:Maryam Zare, Shahram Solaymani, Azizollah Shafiekhani, Slawomir Kulesza, Ştefan Ţălu, Miroslaw Bramowicz

Abstract

Nowadays, increasing awareness of environment and fossil fuels protection stimulates intensive research on clean and renewable sources of energy. Production of hydrogen from water through solar-driven splitting reactions is one of the most promising approaches in the field of photoelectrochemistry (PEC). In this work we have fabricated well-aligned, highly-ordered, smooth-mouth TiO2 nanotube arrays (TNAs) in a two-step anodization process of titanium foil, which were then used as photoelectrodes for PEC water splitting. It demonstrates for the first time correspondence between non-linear component characteristics of multiscale rough surface and crystalline structure of annealed TNAs measured at various fabrication stages and their photoelectrochemical response. The as-anodized TNAs with isotropic surface (deduced from AFM and SEM images) and largest figure of merit (according to their PEC performance) were annealed at 450 °C in air. Scale-invariant descriptors of the surface structure of the deposits involved: fractal dimension, corner frequency, roughness, size of nanostructures and their dominant habits. Moreover, X-ray diffraction data processed using the Rietveld method confirmed co-existence of various oxides, for example: TiO2 in the form of anatase, TiO and Ti3O5 phases in the TNAs under study pointing that previous well-established mechanisms of the TNA growth were to certain degree incomplete.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。