The Effect of Aligned and Random Electrospun Fibers Derived from Porcine Decellularized ECM on Mesenchymal Stem Cell-Based Treatments for Spinal Cord Injury

源自猪脱细胞 ECM 的定向和随机电纺纤维对基于间充质干细胞的脊髓损伤治疗的影响

阅读:4
作者:Zhiqiang Tai, Jiashang Liu, Bixue Wang, Shu Chen, Changsheng Liu, Xi Chen

Abstract

The impact of traumatic spinal cord injury (SCI) can be extremely devastating, as it often results in the disruption of neural tissues, impeding the regenerative capacity of the central nervous system. However, recent research has demonstrated that mesenchymal stem cells (MSCs) possess the capacity for multi-differentiation and have a proven track record of safety in clinical applications, thus rendering them effective in facilitating the repair of spinal cord injuries. It is urgent to develop an aligned scaffold that can effectively load MSCs for promoting cell aligned proliferation and differentiation. In this study, we prepared an aligned nanofiber scaffold using the porcine decellularized spinal cord matrix (DSC) to induce MSCs differentiation for spinal cord injury. The decellularization method removed 87% of the immune components while retaining crucial proteins in DSC. The electrospinning technique was employed to fabricate an aligned nanofiber scaffold possessing biocompatibility and a diameter of 720 nm. In in vitro and in vivo experiments, the aligned nanofiber scaffold induces the aligned growth of MSCs and promotes their differentiation into neurons, leading to tissue regeneration and nerve repair after spinal cord injury. The approach exhibits promising potential for the future development of nerve regeneration scaffolds for spinal cord injury treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。