Targeted development of specific biomarkers of endometrial stromal cell differentiation using bioinformatics: the IFITM1 model

利用生物信息学针对性开发子宫内膜基质细胞分化特异性生物标志物:IFITM1 模型

阅读:5
作者:Carlos E Parra-Herran, Liping Yuan, Marisa R Nucci, Bradley J Quade

Abstract

When classifying cellular uterine mesenchymal neoplasms, histological distinction of endometrial stromal from smooth muscle neoplasms can be difficult. The only widely established marker of endometrial stromal differentiation, CD10, has marginal specificity. We took a bioinformatics approach to identify more specific markers of endometrial stromal differentiation by searching the Human Protein Atlas, a public database of protein expression profiles. After screening the database using different methods, interferon-induced transmembrane protein 1 (IFITM1) was selected for further analysis. Immunohistochemistry for IFITM1 was performed using tissue sections from the selected cases of proliferative endometrium (22), secretory endometrium (6), inactive endometrium (19), adenomyosis (10), conventional leiomyoma (11), cellular leiomyoma (16), endometrial stromal nodule (2), low-grade endometrial stromal sarcoma (16), high-grade endometrial stromal sarcoma (2) and undifferentiated uterine sarcoma (2). Stained slides were scored in terms of intensity and distribution. Normal endometrial samples uniformly showed diffuse and strong IFITM1 staining. Endometrial stromal neoplasms, particularly low-grade endometrial stromal sarcoma, showed higher IFITM1 expression compared with smooth muscle neoplasms (P<0.0001). IFITM1 immunohistochemistry has high sensitivity and specificity, particularly in the distinction between low-grade endometrial stromal sarcoma and leiomyoma (81.2 and 86.7%, respectively). Our results indicate that IFITM1 is a sensitive and specific marker of endometrial stromal differentiation across the spectrum from proliferative endometrium to metastatic stromal sarcoma. IFITM1 is a potential valuable addition to immunohistochemical panels used in the diagnosis of cellular mesenchymal uterine tumors. Further studies with larger number of cases are necessary to corroborate this impression and determine the utility of IFITM1 in routine practice. This study is a clear example of how bioinformatics, particularly tools for mining genomic and proteomic databases, can enhance and accelerate biomarker development in diagnostic pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。