The tyrosine capsid mutations on retrograde adeno-associated virus accelerates gene transduction efficiency

逆行腺相关病毒的酪氨酸衣壳突变可加速基因转导效率

阅读:1
作者:Ryota Nakahama ,Aika Saito ,Sensho Nobe ,Kazuya Togashi ,Ikuo K Suzuki ,Akira Uematsu ,Kazuo Emoto

Abstract

Adeno-associated virus (AAV) vector is a critical tool for gene delivery through its durable transgene expression and safety profile. Among many serotypes, AAV2-retro is typically utilized for dissecting neural circuits with its retrograde functionality. However, this vector requires a relatively long-term incubation period (over 2 weeks) to obtain enough gene expression levels presumably due to low efficiency in gene transduction. Here, we aimed to enhance transgene expression efficiency of AAV2-retro vectors by substituting multiple tyrosine residues with phenylalanines (YF mutations) in the virus capsid, which is previously reported to improve the transduction efficiency of AAV2-infected cells by evading host cell responses. We found that AAV2-retro with YF mutations (AAV2-retroYF)-mediated transgene expression was significantly enhanced in the primary culture of murine cortical neurons at 1 week after application, comparable to that of the conventional AAV2-retro at 2 week after application. Moreover, transgene expressions in the retrogradely labeled neurons mediated by AAV2-retroYF were significantly increased both in the cortico-cortical circuits and in the subcortical circuits in vivo, while the retrograde functionality of AAV2-retroYF was equally effective as that of AAV2-retro. Our data indicate that YF mutations boost AAV2-retro-mediated retrograde gene transduction in vivo and suggest that the AAV2-retroYF should be useful for efficient targeting of the projection-defined neurons, which is suited to applications for dissecting neural circuits during development as well as future clinical applications. Keywords: Adeno-associated virus; Cortex; Limbic area; Monosynaptic anterograde transport; Retrograde transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。