Familial Alzheimer's disease-associated presenilin 1 mutants promote γ-secretase cleavage of STIM1 to impair store-operated Ca2+ entry

家族性阿尔茨海默病相关的早老素 1 突变体促进 γ-分泌酶裂解 STIM1,从而损害池操纵的 Ca2+ 内流

阅读:7
作者:Benjamin Chun-Kit Tong, Claire Shuk-Kwan Lee, Wing-Hei Cheng, Kwok-On Lai, J Kevin Foskett, King-Ho Cheung

Abstract

Some forms of familial Alzheimer's disease (FAD) are caused by mutations in presenilins (PSs), catalytic components of a γ-secretase complex that cleaves target proteins, including amyloid precursor protein (APP). Calcium (Ca(2+)) dysregulation in cells with these FAD-causing PS mutants has been attributed to attenuated store-operated Ca(2+) entry [SOCE; also called capacitative Ca(2+) entry (CCE)]. CCE occurs when STIM1 detects decreases in Ca(2+) in the endoplasmic reticulum (ER) and activates ORAI channels to replenish Ca(2+) stores in the ER. We showed that CCE was attenuated by PS1-associated γ-secretase activity. Endogenous PS1 and STIM1 interacted in human neuroblastoma SH-SY5Y cells, patient fibroblasts, and mouse primary cortical neurons. Forms of PS1 with FAD-associated mutations enhanced γ-secretase cleavage of the STIM1 transmembrane domain at a sequence that was similar to the γ-secretase cleavage sequence of APP. Cultured hippocampal neurons expressing mutant PS1 had attenuated CCE that was associated with destabilized dendritic spines, which were rescued by either γ-secretase inhibition or overexpression of STIM1. Our results indicate that γ-secretase activity may physiologically regulate CCE by targeting STIM1 and that restoring STIM1 may be a therapeutic approach in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。