Esaxerenone Attenuates Aldosterone-Induced Mitochondrial Damage-Mediated Pyroptosis in Mouse Aorta and Rat Vascular Smooth Muscle Cells

艾萨克塞酮可减轻小鼠主动脉和大鼠血管平滑肌细胞中醛固酮诱导的线粒体损伤介导的细胞焦亡

阅读:6
作者:Yunqian Xian, Xuan Wang, Yi Chang, Panpan Qiang, Yutong Han, Juan Hao, Xiaomeng Gao, Tatsuo Shimosawa, Qingyou Xu, Fan Yang

Background

Vascular smooth muscle cell (VSMC) injury caused by the inflammatory response plays a key role in cardiovascular disease (CVD), and the vasoprotective effects of mineralocorticoid receptor blockers (MRBs) support the role of mineralocorticoid receptor (MR) activation.

Conclusions

Aldosterone activates the MR and mediates mitochondrial damage, thereby inducing pyroptosis in VSMCs via the NLRP3/caspase-1 pathway. Esaxerenone inhibits MR activation and reduces mitochondrial damage and oxidative stress, thereby inhibiting pyroptosis.

Methods

C57BL/6 mice and VSMCs isolated from rats were treated with aldosterone and esaxerenone. Caspase-1, GSDMD-N, IL-1β, and NR3C2 expression and DNA damage in aortic VSMCs were detected using immunohistochemistry, Western blotting, and TUNEL staining. Mitochondrial changes were detected by transmission electron microscopy (TEM). Reactive oxygen species (ROS), MitoTracker, JC-I, mitochondrial respiratory chain complexes I-V, and NR3C2 were detected using immunofluorescence and flow cytometry. Pyroptosis was detected with scanning electron microscopy (SEM).

Results

After aldosterone treatment, the number of TUNEL-positive cells increased significantly, and the expression of caspase-1, GSDMD-N, and IL-1β increased. TEM revealed mitochondrial damage, and SEM revealed specific pyroptotic changes, such as cell membrane pore changes and cytoplasmic extravasation. Increased ROS levels and nuclear translocation of NR3C2 were also observed. These pyroptosis-related changes were reversed by esaxerenone. Conclusions: Aldosterone activates the MR and mediates mitochondrial damage, thereby inducing pyroptosis in VSMCs via the NLRP3/caspase-1 pathway. Esaxerenone inhibits MR activation and reduces mitochondrial damage and oxidative stress, thereby inhibiting pyroptosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。