Freshwater copepod carcasses as pelagic microsites of dissimilatory nitrate reduction to ammonium

淡水桡足类尸体作为异化硝酸盐还原为铵的远洋微区

阅读:7
作者:Peter Stief, Ann Sofie Birch Lundgaard, Alexander H Treusch, Bo Thamdrup, Hans-Peter Grossart, Ronnie N Glud

Abstract

A considerable fraction of freshwater zooplankton was recently found to consist of dead specimens that sink to the lake bottom. Such carcasses host intense microbial activities that may promote oxygen depletion at the microscale. Therefore, we tested the hypothesis that sinking zooplankton carcasses are microsites of anaerobic nitrogen cycling that contribute to pelagic fixed-nitrogen loss even in the presence of ambient oxygen. Incubation experiments were performed with the ubiquitous copepods Eudiaptomus sp. and Megacyclops gigas at different ambient oxygen levels that sinking carcasses encounter during their descent in stratified lakes. 15N-stable-isotope incubations revealed intense carcass-associated anaerobic nitrogen cycling only at low ambient oxygen levels (<25% air saturation). Dissimilatory nitrate reduction to ammonium (DNRA) dominated over denitrification and thus the potential for fixed-nitrogen loss was low. Consistent with this partitioning of anaerobic nitrogen cycling, the relative abundance of the carcass-associated marker gene for DNRA (nrfA) was ∼20-400 times higher than that for denitrification (nirS). Additionally, the relative nrfA and nirS abundances were ∼90-180 times higher on copepod carcasses than in lake water. This functional distinctiveness of carcass-associated bacterial communities was further substantiated by 16S rDNA-based fingerprinting. We conclude that the unique bacterial communities and microenvironments provided by zooplankton carcasses influence pelagic nitrogen cycling in lakes, but mainly at seasonally low ambient O2 levels in the bottom water.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。