Characterization of the Expression of Vacuolar Protein Sorting 11 (Vps11) in Mammalian Oligodendrocytes

哺乳动物少突胶质细胞中液泡蛋白分选11 (Vps11) 表达的特征分析

阅读:4
作者:Robert P Skoff ,Denise Bessert ,Shreya Banerjee ,Xixia Luo ,Ryan Thummel

Abstract

A founder mutation in human VPS11 (Vacuolar Protein Sorting 11) was recently linked to a genetic leukoencephalopathy in Ashkenazi Jews that presents with the classical features of white matter disorders of the central nervous system (CNS). The neurological deficits include hypomyelination, hypotonia, gradual loss of vision, and seizures. However, the cells expressing the mutation were not identified. Here we describe, using immunocytochemistry, the strong expression of Vps11 in mouse oligodendrocytes and, specifically, its localization with Myelin Associated Glycoprotein (MAG) in the inner tongue of myelin. In longitudinal sections of myelin, it forms a bead-like structure, alternating with Myelin Basic Protein (MBP). Immunofluorescent staining with Vps11 and neurofilament proteins indicates the absence of Vps11 in axons in vivo. Finally, changes in Vps11 expression are associated with altered proteolipid protein (PLP) levels based upon mice with duplications or deletions of the Plp1 gene. To determine potential functional contributions of Vps11, we combined Vps11 with Platelet Derived Growth Factor Receptor-α (PDGFRα) in vitro and in vivo: in both conditions, co-localization of the two proteins was frequently found in round vesicles of OPCs/oligodendrocytes, suggesting retrograde transport for degradation by the endolysosomal system. Neuron-to-glial communication has been invoked to explain degenerative changes in myelin followed by degenerative changes in axons, and vice versa; but to our knowledge, no specific proteins in retrograde transport from the myelin inner tongue to oligodendrocyte perikarya have been identified. The identification of mutations in VPS11 and its localization at the axon-myelin interface should open new avenues of research.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。