Facilitative effects of environmental enrichment for cocaine relapse prevention are dependent on extinction training context and involve increased TrkB signaling in dorsal hippocampus and ventromedial prefrontal cortex

环境丰富对预防可卡因复发的促进作用取决于消退训练环境,并涉及背侧海马和腹内侧前额叶皮质中 TrkB 信号的增加

阅读:11
作者:Margaret H Hastings, Jamie M Gauthier, Kyle Mabry, Audrey Tran, Heng-Ye Man, Kathleen M Kantak

Abstract

Cocaine-cue extinction training combined with brief interventions of environmental enrichment (EE) was shown previously to facilitate extinction and attenuate reacquisition of cocaine self-administration in rats. It is unknown whether or not the usefulness of this approach would be undermined if extinction training took place in a novel rather than familiar context. Drawing on previous studies involving pharmacological interventions, we hypothesized that the facilitative effects of EE for cocaine relapse prevention would be independent of the context used for extinction training. Rats trained to self-administer cocaine underwent cocaine-cue extinction training in either the familiar self-administration context or a novel context, with or without EE. Rats then were tested for reacquisition of cocaine self-administration in the familiar context. Target brain regions were lysed and probed for memory-related changes in receptors for glutamate and BDNF by western blotting. Contrary to our hypothesis, the facilitative effects of EE for cocaine relapse prevention were dependent on the context used for extinction training. While EE facilitated extinction regardless of context used, it inhibited cocaine relapse only after extinction training in the familiar context. EE was associated with increased GluA2 in nucleus accumbens, TrkB in dorsal hippocampus and activated TrkB in ventromedial prefrontal cortex. Of these, the changes in dorsal hippocampus and ventromedial prefrontal cortex mirrored outcomes of the cocaine relapse tests in that these changes were specific to rats receiving EE plus extinction training in the familiar context. These findings support a role for hippocampal-prefrontal BDNF-TrkB signaling in extinction-based relapse prevention strategies involving EE.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。