A switch in the poly(dC)/RmlB complex regulates bacterial persister formation

poly(dC)/RmlB 复合物中的开关调节细菌持久菌的形成

阅读:6
作者:Xu Chen, Gen Li, Xuewei Liao, Jie Fang, Bo Li, Shanshan Yu, Mingming Sun, Jun Wu, Lihao Zhang, Yi Hu, Jiaguo Jiao, Ting Liu, Li Xu, Xiaoyun Chen, Manqiang Liu, Huixin Li, Feng Hu, Kouhong Sun

Abstract

Bacterial persisters are phenotypic variants that tolerate exposure to lethal antibiotics. These dormant cells are responsible for chronic and recurrent infections. Multiple mechanisms have been linked to persister formation. Here, we report that a complex, consisting of an extracellular poly(dC) and its membrane-associated binding protein RmlB, appears to be associated with persistence of the opportunistic pathogen Pseudomonas aeruginosa. Environmental stimuli triggers a switch in the complex physiological state (from poly(dC)/RmlB to P-poly(dC)/RmlB or RmlB). In response to the switch, bacteria decrease proton motive force and intracellular ATP levels, forming dormant cells. This alteration in complex status is linked to a (p)ppGpp-controlled signaling pathway that includes inorganic polyphosphate, Lon protease, exonuclease VII (XseA/XseB), and the type III secretion system. The persistence might be also an adaptive response to the lethal action of the dTDP-L-rhamnose pathway shutdown, which occurs due to switching of poly(dC)/RmlB.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。