Actin Polymerization Status Regulates Tendon Homeostasis through Myocardin-Related Transcription Factor-A

肌动蛋白聚合状态通过心肌素相关转录因子 A 调节肌腱稳态

阅读:8
作者:Valerie C West, Kaelyn Owen, Kameron L Inguito, Karl Matthew M Ebron, Tori Reiner, Chloe E Mirack, Christian Le, Rita de Cassia Marqueti, Steven Snipes, Rouhollah Mousavizadeh, Dawn M Elliott, Justin Parreno

Abstract

The actin cytoskeleton is a potent regulator of tenocyte homeostasis. However, the mechanisms by which actin regulates tendon homeostasis are not entirely known. This study examined the regulation of tenocyte molecule expression by actin polymerization via the globular (G-) actin-binding transcription factor, myocardin-related transcription factor-a (MRTF). We determined that decreasing the proportion of G-actin in tenocytes by treatment with TGFβ1 increases nuclear MRTF. These alterations in actin polymerization and MRTF localization coincided with favorable alterations to tenocyte gene expression. In contrast, latrunculin A increases the proportion of G-actin in tenocytes and reduces nuclear MRTF, causing cells to acquire a tendinosis-like phenotype. To parse out the effects of F-actin depolymerization from regulation by MRTF, we treated tenocytes with cytochalasin D. Similar to latrunculin A treatment, exposure of cells to cytochalasin D increases the proportion of G-actin in tenocytes. However, unlike latrunculin A treatment, cytochalasin D increases nuclear MRTF. Compared to latrunculin A treatment, cytochalasin D led to opposing effects on the expression of a subset of genes. The differential regulation of genes by latrunculin A and cytochalasin D suggests that actin signals through MRTF to regulate a specific subset of genes. By targeting the deactivation of MRTF through the inhibitor CCG1423, we verify that MRTF regulates Type I Collagen, Tenascin C, Scleraxis, and α-smooth muscle actin in tenocytes. Actin polymerization status is a potent regulator of tenocyte homeostasis through the modulation of several downstream pathways, including MRTF. Understanding the regulation of tenocyte homeostasis by actin may lead to new therapeutic interventions against tendinopathies, such as tendinosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。