Vasculature segmentation in 3D hierarchical phase-contrast tomography images of human kidneys

人体肾脏 3D 分层相位对比断层扫描图像中的血管分割

阅读:9
作者:Yashvardhan Jain, Claire L Walsh, Ekin Yagis, Shahab Aslani, Sonal Nandanwar, Yang Zhou, Juhyung Ha, Katherine S Gustilo, Joseph Brunet, Shahrokh Rahmani, Paul Tafforeau, Alexandre Bellier, Griffin M Weber, Peter D Lee, Katy Börner

Abstract

Efficient algorithms are needed to segment vasculature in new three-dimensional (3D) medical imaging datasets at scale for a wide range of research and clinical applications. Manual segmentation of vessels in images is time-consuming and expensive. Computational approaches are more scalable but have limitations in accuracy. We organized a global machine learning competition, engaging 1,401 participants, to help develop new deep learning methods for 3D blood vessel segmentation. This paper presents a detailed analysis of the top-performing solutions using manually curated 3D Hierarchical Phase-Contrast Tomography datasets of the human kidney, focusing on the segmentation accuracy and morphological analysis, thereby establishing a benchmark for future studies in blood vessel segmentation within phase-contrast tomography imaging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。