SLC35A2 modulates paramyxovirus fusion events during infection

SLC35A2 调节感染过程中的副粘病毒融合事件

阅读:6
作者:Yanling Yang, Yuchen Wang, Danielle E Campbell, Heng-Wei Lee, Leran Wang, Megan Baldridge, Carolina B López

Abstract

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized GFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection. SLC35A1 knockout (KO) cells showed significantly reduced binding and infection of SeV, NDV and MuV due to the lack of cell surface sialic acids, which act as their receptors. However, SLC35A2 KO cells revealed unknown critical roles for this factor in virus-cell and cell-to-cell fusion events during infection with different paramyxoviruses. While the UGT was essential for virus-cell fusion during SeV entry to the cell, it was not required for NDV or MuV entry. Importantly, the UGT promoted the formation of larger syncytia during MuV infection, suggesting a role in cell-to-cell virus spread. Our findings demonstrate that paramyxoviruses can bind to or enter A549 cells in the absence of canonical galactose-bound sialic-acid decorations and show that the UGT facilitates paramyxovirus fusion processes involved in entry and spread.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。