LncRNA LPAL2/miR-1287-5p/EGFR Axis Modulates TED-Derived Orbital Fibroblast Activation Through Cell Adhesion Factors

LncRNA LPAL2/miR-1287-5p/EGFR 轴通过细胞粘附因子调节 TED 衍生的眼眶成纤维细胞活化

阅读:8
作者:Nuo Wang, Shi-Ying Hou, Xin Qi, Mi Deng, Jia-Min Cao, Bo-Ding Tong, Wei Xiong

Conclusion

The LPAL2/miR-1287-5p axis modulated TGF-β1-induced increases in cell adhesion factor levels and TED orbital fibroblast activation through EGFR/AKT signaling.

Methods

Immunofluorescence (IF) staining was applied to evaluate the fibrotic changes in target cells. Cell proliferation was evaluated by 5-ethoxy 2-deoxyuridine and colony-formation assays. Collagen I concentration was determined by enzyme-linked immunosorbent assay. Human microarray analysis was performed on 3 TED and 3 healthy control orbital tissue samples.

Objective

We aimed to investigate the mechanism of TED orbital fibroblast activation from the perspective of noncoding RNA regulation.

Results

Bioinformatics analysis showed that cell adhesion signaling factors were differentially expressed in TED tissues, including intercellular adhesion molecule (ICAM)-1, ICAM-4, vascular cell adhesion molecule, and CD44, which were all upregulated in diseased orbital tissues. Long noncoding RNA LPAL2 level was also upregulated in orbital tissues and positively correlated with ICAM-1 and ICAM-4 expression. Stimulation of the TED orbital fibroblasts by transforming growth factor-β1 (TGF-β1) significantly increased the expression of ICAM-1, ICAM-4, and LPAL2. Knockdown of LPAL2 in orbital fibroblasts inhibited TGF-β1-induced increases in cell adhesion factor levels and orbital fibroblast activation. Microarray profiling was performed on TED and normal orbital tissues to identify differentially expressed microRNAs, and miR-1287-5p was remarkably reduced within diseased orbital samples. miR-1287-5p was directly bound to the epidermal growth factor receptor (EGFR) 3' untranslated region and LPAL2, and LPAL2 modulated EGFR/protein kinase B (AKT) signaling through targeting miR-1287-5p.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。