Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: the anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway

非诺贝特诱导的线粒体功能障碍和代谢重编程逆转:PPAR通路介导的胃癌细胞抗肿瘤作用

阅读:6
作者:Lulu Chen, Jin Peng, You Wang, Huangang Jiang, Wenbo Wang, Jing Dai, Meng Tang, Yan Wei, Hao Kuang, Guozeng Xu, Hui Xu, Fuxiang Zhou

Abstract

Cancer cells reprogram their metabolism to adapt to fast growth and environmental demands, which differ them from normal cells. Mitochondria are central to the malignant metabolism reprogramming process. Here, we report that PPARα was highly expressed in gastric cancer tissues and negatively correlated with prognosis. Fenofibrate, a common drug used to treat severe hypertriglyceridemia and mixed dyslipidemia, reversed cellular metabolism and mitochondrial dysfunction in gastric cancer cells through PPARα. Our results show that fenofibrate altered glucose and lipid metabolism, inhibited gastric cancer cell proliferation, and promoted apoptosis in gastric cancer cells. We further show that fenofibrate induced mitochondrial reprogramming via CPT1 and the fatty acid oxidation pathway, as well as by activating the AMPK pathway and inhibiting the HK2 pathway. Additionally, fenofibrate inhibited subcutaneous gastric cancer cell tumor growth without obvious toxicity in mice. Collectively, our results indicate that fenofibrate exhibits anti-tumor activity in vitro and in vivo via the mitochondria and metabolic reprogramming, demonstrating that mitochondrial regulation and the normalization of cancer cell metabolism are novel therapeutic strategies for cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。