Physiology and anatomy of neurons in the medial superior olive of the mouse

小鼠内侧上橄榄体神经元的生理学和解剖学

阅读:5
作者:Matthew J Fischl, R Michael Burger, Myriam Schmidt-Pauly, Olga Alexandrova, James L Sinclair, Benedikt Grothe, Ian D Forsythe, Conny Kopp-Scheinpflug

Abstract

In mammals with good low-frequency hearing, the medial superior olive (MSO) computes sound location by comparing differences in the arrival time of a sound at each ear, called interaural time disparities (ITDs). Low-frequency sounds are not reflected by the head, and therefore level differences and spectral cues are minimal or absent, leaving ITDs as the only cue for sound localization. Although mammals with high-frequency hearing and small heads (e.g., bats, mice) barely experience ITDs, the MSO is still present in these animals. Yet, aside from studies in specialized bats, in which the MSO appears to serve functions other than ITD processing, it has not been studied in small mammals that do not hear low frequencies. Here we describe neurons in the mouse brain stem that share prominent anatomical, morphological, and physiological properties with the MSO in species known to use ITDs for sound localization. However, these neurons also deviate in some important aspects from the typical MSO, including a less refined arrangement of cell bodies, dendrites, and synaptic inputs. In vitro, the vast majority of neurons exhibited a single, onset action potential in response to suprathreshold depolarization. This spiking pattern is typical of MSO neurons in other species and is generated from a complement of Kv1, Kv3, and IH currents. In vivo, mouse MSO neurons show bilateral excitatory and inhibitory tuning as well as an improvement in temporal acuity of spiking during bilateral acoustic stimulation. The combination of classical MSO features like those observed in gerbils with more unique features similar to those observed in bats and opossums make the mouse MSO an interesting model for exploiting genetic tools to test hypotheses about the molecular mechanisms and evolution of ITD processing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。