Expression of Signaling Molecules Involved in Embryonic Development of the Insertion Site Is Inadequate for Reformation of the Native Enthesis: Evaluation in a Novel Murine ACL Reconstruction Model

参与插入部位胚胎发育的信号分子表达不足以重建原生肌腱:在新型小鼠 ACL 重建模型中进行评估

阅读:13
作者:Xiang-Hua Deng, Amir Lebaschi, Christopher L Camp, Camila B Carballo, Nathan W Coleman, Jianchun Zong, Brian M Grawe, Scott A Rodeo

Background

Since healing of anterior cruciate ligament (ACL) grafts occurs by formation of a fibrovascular scar-tissue interface rather than by reformation of the native fibrocartilage transition zone, the

Conclusions

The spatial and temporal pattern of expression of signaling molecules that direct embryologic insertion-site formation was not adequate to restore the structure and composition of the native insertion site. Clinical relevance: Development of a murine model to study ACL reconstruction will allow the use of transgenic animals to investigate the cellular, molecular, and biomechanical aspects of tendon-to-bone healing following ACL reconstruction, ultimately suggesting methods to improve healing in patients.

Methods

Seventy-nine mice underwent reconstruction of the ACL with autograft. Healing was assessed using histology in 12 mice and quantitative real-time polymerase chain reaction (qRT-PCR) gene-expression analysis in 3 mice at 1 week postoperatively (Group-1 mice) and by biomechanical analysis in 7, histological analysis in 7, immunohistochemical analysis in 5, microcomputed tomography analysis in 5, and qRT-PCR analyses in 8 at 2 weeks (Group-2 mice) and 4 weeks (Group-3 mice) postoperatively. Fifteen additional mice did not undergo surgery and were used for biomechanical (7 mice), qRT-PCR (3 mice), and immunohistochemical (5 mice) analyses to obtain baseline data for the native ACL.

Results

Histological analysis demonstrated healing by formation of fibrovascular tissue at the tendon-bone interface. Immunohistochemical analysis showed a positive expression of proteins in the Indian hedgehog, Wnt, and parathyroid hormone-related protein (PTHrP) pathways. There was minimal Sox-9 expression. Gene-expression analysis showed an initial increase in markers of tissue repair and turnover, followed by a subsequent decline. Mean failure force and stiffness of the native ACL were 5.60 N and 3.44 N/mm, respectively. Mean failure force and stiffness were 1.29 N and 2.28 N/mm, respectively, in Group 2 and were 1.79 N and 2.59 N/mm, respectively, in Group 3, with 12 of 14 failures in these study groups occurring by tunnel pull-out. Conclusions: The spatial and temporal pattern of expression of signaling molecules that direct embryologic insertion-site formation was not adequate to restore the structure and composition of the native insertion site. Clinical relevance: Development of a murine model to study ACL reconstruction will allow the use of transgenic animals to investigate the cellular, molecular, and biomechanical aspects of tendon-to-bone healing following ACL reconstruction, ultimately suggesting methods to improve healing in patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。