An autonucleolytic suspension HEK293F host cell line for high-titer serum-free AAV5 and AAV9 production with reduced levels of DNA impurity

自核酸溶解悬浮 HEK293F 宿主细胞系,用于生产高滴度无血清 AAV5 和 AAV9,同时降低 DNA 杂质含量

阅读:7
作者:Geoffrey Howe, Mehtap Bal, Matt Wasmuth, Giulia Massaro, Ahad A Rahim, Sadfer Ali, Milena Rivera, Desmond M Schofield, Aminat Omotosho, John Ward, Eli Keshavarz-Moore, Chris Mason, Darren N Nesbeth

Abstract

We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.06 × 1010 AAV5 viral genomes (vg)/mL via transient transfection, compared with 3.85 × 109 vg/mL from the parental HEK293F cell line. AAV9 production, followed by purification by ultracentrifugation, yielded 1.8 × 1013 vg/mL from NuPro-1S cells compared with 7.35 × 1012 vg/mL from HEK293F cells. AAV9 from both HEK293F and NuPro-1S showed almost identical ability to transduce cells embedded in a scaffold tissue mimic or cells of mouse neonate brain tissue in vivo. Comparison of agarose gel data indicated that the DNA content of AAV5 and AAV9 process streams from NuPro-1S cells was reduced by approximately 60% compared with HEK293F cells. A similar reduction in HEK293F cells was only achievable with a 50 U/mL Benzonase treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。