Pyrolysis of End-Of-Life Tires: Moving from a Pilot Prototype to a Semi-Industrial Plant Using Auger Technology

废旧轮胎的热解:利用螺旋钻技术从试点原型转向半工业化工厂

阅读:9
作者:Alberto Veses, Juan Daniel Martínez, Alberto Sanchís, José Manuel López, Tomás García, Gonzalo García, Ramón Murillo

Abstract

This work, carried out within the framework of the BlackCycle project, demonstrates the robustness of an auger reactor for the pyrolysis of end-of-life tires (ELTs) to be considered within the seventh level of technology readiness (TRL-7). For this purpose, the resulting pyrolysis products are compared with those obtained from a pilot scale facility ranging within the fifth technology readiness level (TRL-5). Using the same type of ELTs, tire trucks (TTs), operating conditions used at the TRL-5 plant are attempted to mimic those expected at a semi-industrial plant: tailored temperature profile (450, 550, and 775 °C) and residence time for vapors (30 s) and solids (15 min). The feed mass rate is 4 and 400 kg/h for the pilot and semi-industrial plants, respectively. The yields of tire pyrolysis oil (TPO), tire pyrolysis gas (TPG), and raw recovered carbon black (RRCB) from both plants, as well as their key properties and characteristics, are in good agreement with each other. The TPO produced by both plants contains comparable concentrations of value-added chemicals such as benzene, toluene, xylene, ethylbenzene, and limonene. There is also a very similar pattern between the simulated distillation curves. The TPG obtained from both plants is also very rich in H2 and CH4 and has a lower calorific value of 52-54 MJ/Nm3 (N2 free basis). Although the RRCBs produced by the two plants are more demanding and require more labor, they do have a number of comparable characteristics. All this information demonstrates not only the reliability of the experimental campaigns to scale up the pyrolysis process but also the robustness of the semi-industrial scale plant based on the auger technology to be classified at TRL-7.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。