Neurotransmitter phenotype switching by spinal excitatory interneurons regulates locomotor recovery after spinal cord injury

脊髓兴奋性中间神经元的神经递质表型转换调节脊髓损伤后的运动恢复

阅读:6
作者:Hannah Bertels, Guillem Vicente-Ortiz, Khadija El Kanbi, Aya Takeoka

Abstract

Severe spinal cord injury in adults leads to irreversible paralysis below the lesion. However, adult rodents that received a complete thoracic lesion just after birth demonstrate proficient hindlimb locomotion without input from the brain. How the spinal cord achieves such striking plasticity remains unknown. In this study, we found that adult spinal cord injury prompts neurotransmitter switching of spatially defined excitatory interneurons to an inhibitory phenotype, promoting inhibition at synapses contacting motor neurons. In contrast, neonatal spinal cord injury maintains the excitatory phenotype of glutamatergic interneurons and causes synaptic sprouting to facilitate excitation. Furthermore, genetic manipulation to mimic the inhibitory phenotype observed in excitatory interneurons after adult spinal cord injury abrogates autonomous locomotor functionality in neonatally injured mice. In comparison, attenuating this inhibitory phenotype improves locomotor capacity after adult injury. Together, these data demonstrate that neurotransmitter phenotype of defined excitatory interneurons steers locomotor recovery after spinal cord injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。