Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome

CTNND1 中的新型截短突变导致显性颅面和心脏综合征

阅读:8
作者:Reham Alharatani, Athina Ververi, Ana Beleza-Meireles, Weizhen Ji, Emily Mis, Quinten T Patterson, John N Griffin, Nabina Bhujel, Caitlin A Chang, Abhijit Dixit, Monica Konstantino, Christopher Healy, Sumayyah Hannan, Natsuko Neo, Alex Cash, Dong Li, Elizabeth Bhoj, Elaine H Zackai, Ruth Cleaver, Di

Abstract

CTNND1 encodes the p120-catenin (p120) protein, which has a wide range of functions, including the maintenance of cell-cell junctions, regulation of the epithelial-mesenchymal transition and transcriptional signalling. Due to advances in next-generation sequencing, CTNND1 has been implicated in human diseases including cleft palate and blepharocheilodontic (BCD) syndrome albeit only recently. In this study, we identify eight novel protein-truncating variants, six de novo, in 13 participants from nine families presenting with craniofacial dysmorphisms including cleft palate and hypodontia, as well as congenital cardiac anomalies, limb dysmorphologies and neurodevelopmental disorders. Using conditional deletions in mice as well as CRISPR/Cas9 approaches to target CTNND1 in Xenopus, we identified a subset of phenotypes that can be linked to p120-catenin in epithelial integrity and turnover, and additional phenotypes that suggest mesenchymal roles of CTNND1. We propose that CTNND1 variants have a wider developmental role than previously described and that variations in this gene underlie not only cleft palate and BCD but may be expanded to a broader velocardiofacial-like syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。