LncRNA MALAT1 knockdown inhibits cell migration and invasion by suppressing autophagy through miR-384/GOLM1 axis in glioma

LncRNA MALAT1 敲低通过抑制胶质瘤中 miR-384/GOLM1 轴的自噬来抑制细胞迁移和侵袭

阅读:9
作者:R Ma, B-W Zhang, Z-B Zhang, Q-J Deng

Conclusions

MALAT1 knockdown depleted migration and invasion by inhibiting autophagy through MALAT1/miR-384/GOLM1 axis in glioma in vitro and in vivo. The MALAT1/miR-384/GOLM1 axis was first proposed in our report, enriching the action mechanism of MALAT1 in glioma.

Methods

The expression of MALAT1, microRNA-384 (miR-384) and Golgi membrane protein 1 (GOLM1) was detected by quantitative Real-time polymerase chain reaction (qRT-PCR). The protein levels of GOLM1, light chain3 (LC3-II/LC3-I), p62, Vimentin and E-cadherin were proved by Western blot. Cell migration and invasion were monitored using the transwell assay. Bioinformatics tool starBase was used to predict target genes and associated binding sites. RNA immunoprecipitation assay (RIP) and dual-luciferase reporter assay were utilized to verify the relationship between miR-384 and MALAT1 or GOLM1. Tumor formation analysis in nude mice was conducted to ascertain the role of MALAT1 in vivo.

Objective

Glioma is characterized by high metastasis with poor outcomes. Long non-coding RNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was well-explored in numerous human cancers, including glioma. This study aimed to provide a novel action mechanism of MALAT1 in glioma. Materials and

Results

MALAT1 was highly expressed in glioma tissues and cells. MALAT1 knockdown inhibited autophagy, migration and invasion of glioma cells. MiR-384 was a target of MALAT1, and miR-384 inhibition reversed the effects of MALAT1 knockdown in glioma cells. GOLM1 was a target of miR-384, and miR-384 inhibition eliminated the function of GOLM1 downregulation in glioma cells. In addition, GOLM1 was regulated by MALAT1 through miR-384. Moreover, MALAT1 knockdown blocked tumor growth and development in vivo. Conclusions: MALAT1 knockdown depleted migration and invasion by inhibiting autophagy through MALAT1/miR-384/GOLM1 axis in glioma in vitro and in vivo. The MALAT1/miR-384/GOLM1 axis was first proposed in our report, enriching the action mechanism of MALAT1 in glioma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。