Streptozotocin-induced Diabetes Represses Hepatic CYP2R1 Expression but Induces Vitamin D 25-Hydroxylation in Male Mice

链脲佐菌素诱发的糖尿病抑制了雄性小鼠肝脏 CYP2R1 表达,但诱导了维生素 D 25-羟基化

阅读:6
作者:Mahmoud-Sobhy Elkhwanky, Outi Kummu, Jukka Hakkola

Abstract

Vitamin D deficiency [ie, low plasma 25-hydroxyvitamin D (25-OH-D)] associates with the prevalence of metabolic diseases including type 1 diabetes; however, the molecular mechanisms are incompletely understood. Recent studies have indicated that both fasting and metabolic diseases suppress the cytochrome P450 (CYP) 2R1, the major hepatic vitamin D 25-hydroxylase. We specifically studied the effect of a mouse model of type 1 diabetes on the regulation of Cyp2r1 and vitamin D status. We show that streptozotocin-induced diabetes in mice suppresses the expression of the Cyp2r1 in the liver. While insulin therapy normalized the blood glucose levels in the diabetic mice, it did not rescue the diabetes-induced suppression of Cyp2r1. Similar regulation of Cyp2r1 was observed also in the kidney. Plasma 25-OH-D level was not decreased and was, in contrast, higher after 4 and 8 weeks of diabetes. Furthermore, the vitamin D 25-hydroxylase activity was increased in the livers of the diabetic mice, suggesting compensation of the Cyp2r1 repression by other vitamin D 25-hydroxylase enzymes. Cyp27b1, the vitamin D 1α-hydroxylase, expression in the kidney and the plasma 1α,25-dihydroxyvitamin D level were higher after 4 weeks of diabetes, while both were normalized after 13 weeks. In summary, these results indicate that in the mouse model of type 1 diabetes suppression of hepatic Cyp2r1 expression does not result in reduced hepatic vitamin D 25-hydroxylase activity and vitamin D deficiency. This may be due to induction of other vitamin D 25-hydroxylase enzymes in response to diabetes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。