PDI-Mediated Reduction of Disulfide Bond on PSD95 Increases Spontaneous Seizure Activity by Regulating NR2A-PSD95 Interaction in Epileptic Rats Independent of S-Nitrosylation

PDI 介导的 PSD95 上二硫键的还原通过调节癫痫大鼠的 NR2A-PSD95 相互作用增加自发性癫痫发作,而不依赖于 S-亚硝化

阅读:5
作者:Duk-Shin Lee, Ji-Eun Kim

Abstract

Postsynaptic density-95 (PSD95), a major scaffolding protein, is critical in coupling N-methyl-D-aspartate receptor (NMDAR) to cellular signaling networks in the central nervous system. A couple of cysteine residues in the N-terminus of PSD95 are potential sites for disulfide bonding, S-nitrosylation and/or palmitoylation. Protein disulfide isomerase (PDI) reduces disulfide bonds (S-S) to free thiol (-SH) on various proteins. However, the involvement of PDI in disulfide bond formation/S-nitrosylation of PSD95 and its role in epilepsy are still unknown. In the present study, acute seizure activity significantly increased the bindings of PDI to NR2A, but not to PSD95, while it decreased the NR2A-PSD95 binding. In addition, pilocarpine-induced seizures increased the amount of nitrosylated (SNO-) thiols, not total (free and SNO-) thiols, on PSD95. Unlike acute seizure, spontaneous seizing rats showed the increases in PDI-PSD95 binding, total- and SNO-thiol levels on PSD95, and NR2A-PSD95 interaction. PDI siRNA effectively reduced spontaneous seizure activity with decreases in total thiol level on PSD95 and NR2A-PSD95 association. These findings indicate that PDI-mediated reduction of disulfide-bond formations may facilitate the NR2A-PSD95 binding and contribute to spontaneous seizure generation in epileptic animals.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。