Reprogramming of histone methylation controls the differentiation of monocytes into macrophages

组蛋白甲基化的重编程控制单核细胞向巨噬细胞的分化

阅读:4
作者:Qi-Fan Zheng, Hui-Min Wang, Zhan-Feng Wang, Jin-Yang Liu, Qi Zhang, Li Zhang, Yuan-Hua Lu, Han You, Guang-Hui Jin

Abstract

Subset heterogeneity of the mononuclear phagocyte system (MPS) is controlled by defined transcriptional networks and programs; however, the dynamic establishment of programs that control broad, orchestrated expression of transcription factors (TFs) during the progression of monocyte-into-phagocyte (MP) differentiation remains largely unexplored. By using chromatin immunoprecipitation assays, we show the extensive trimethylation of histone H3 lysine 4 (H3K4me3) as well as histone H3 lysine 27 (H3K27me3) occupancy with broad footprints at the promoters of MP differentiation-related TFs, such as HOXA and FOXO genes, KLF4, IRF8 and others. The rapid repression of HOXA genes was closely associated with the MP differentiation program. H3K4me3 participates in regulating HOXA genes at mild and terminal differentiation periods, while H3K27me3 maintains low-level expression of HOXA genes at phagocytic maintenance periods. Furthermore, the reprogramming of H3K27me3 plays a major role in the up-regulation of KLF4 and FOXO genes during MP differentiation. Importantly, the pharmacological inhibition of H3K4me3 and/or H3K27me3 strikingly promotes the differentiation programs of THP-1 and K562 cells. Together, these findings elucidate mechanisms crucial to the dynamic establishment of epigenetic memory, which is central to the maintenance of the MP differentiation blockade.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。