Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling

单分子超分辨率成像可以定量分析 RAF 多聚体的形成和信号传导

阅读:4
作者:Xiaolin Nan, Eric A Collisson, Sophia Lewis, Jing Huang, Tanja M Tamgüney, Jan T Liphardt, Frank McCormick, Joe W Gray, Steven Chu

Abstract

The RAF serine/threonine kinases regulate cell growth through the MAPK pathway, and are targeted by small-molecule RAF inhibitors (RAFis) in human cancer. It is now apparent that protein multimers play an important role in RAF activation and tumor response to RAFis. However, the exact stoichiometry and cellular location of these multimers remain unclear because of the lack of technologies to visualize them. In the present work, we demonstrate that photoactivated localization microscopy (PALM), in combination with quantitative spatial analysis, provides sufficient resolution to directly visualize protein multimers in cells. Quantitative PALM imaging showed that CRAF exists predominantly as cytoplasmic monomers under resting conditions but forms dimers as well as trimers and tetramers at the cell membrane in the presence of active RAS. In contrast, N-terminal truncated CRAF (CatC) lacking autoinhibitory domains forms constitutive dimers and occasional tetramers in the cytoplasm, whereas a CatC mutant with a disrupted CRAF-CRAF dimer interface does not. Finally, artificially forcing CRAF to the membrane by fusion to a RAS CAAX motif induces multimer formation but activates RAF/MAPK only if the dimer interface is intact. Together, these quantitative results directly confirm the existence of RAF dimers and potentially higher-order multimers and their involvement in cell signaling, and showed that RAF multimer formation can result from multiple mechanisms and is a critical but not sufficient step for RAF activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。