A delta-secretase-truncated APP fragment activates CEBPB, mediating Alzheimer's disease pathologies

delta-分泌酶截短的 APP 片段可激活 CEBPB,从而介导阿尔茨海默病病理

阅读:4
作者:Yinan Yao, Seong Su Kang, Yiyuan Xia, Zhi-Hao Wang, Xia Liu, Thorsten Muller, Yi E Sun, Keqiang Ye

Abstract

Amyloid-β precursor protein (APP) is sequentially cleaved by secretases and generates amyloid-β, the major components in senile plaques in Alzheimer's disease. APP is upregulated in human Alzheimer's disease brains. However, the molecular mechanism of how APP contributes to Alzheimer's disease pathogenesis remains incompletely understood. Here we show that truncated APP C586-695 fragment generated by δ-secretase directly binds to CCAAT/enhancer-binding protein beta (CEBPB), an inflammatory transcription factor, and enhances its transcriptional activity, escalating Alzheimer's disease-related gene expression and pathogenesis. The APP C586-695 fragment, but not full-length APP, strongly associates with CEBPB and elicits its nuclear translocation and augments the transcriptional activities on APP itself, MAPT (microtubule-associated protein tau), δ-secretase and inflammatory cytokine mRNA expression, finally triggering Alzheimer's disease pathology and cognitive disorder in a viral overexpression mouse model. Blockade of δ-secretase cleavage of APP by mutating the cleavage sites reduces its stimulatory effect on CEBPB, alleviating amyloid pathology and cognitive dysfunctions. Clearance of APP C586-695 from 5xFAD mice by antibody administration mitigates Alzheimer's disease pathologies and restores cognitive functions. Thus, in addition to the sequestration of amyloid-β, APP implicates in Alzheimer's disease pathology by activating CEBPB upon δ-secretase cleavage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。