Significance
The drug resistance acquired in cancer cells has been considered as a major challenge for the cancer treatment. Due to complexity, the molecular mechanisms are still largely unknown. Identifying the key markers will improve our understanding of the mechanisms and is crucial for the development of new therapeutic strategies to overcome resistance. To date, increasing number of proteomics and phosphoproteomics studies were reported to investigate the mechanisms of drug resistance. However, the methylproteomics studies related to drug resistance were not reported yet. Here, we performed the SPE-SCX based label-free quantitative proteomics to analyze the methylproteomes of both resistant cell line Bel/5-Fu and sensitive cell line Bel. Through the qualitative and quantitative analysis, we found that the sequence characteristics of methylation sites were evidently different between these two cell lines. The results suggested that some methyltransferases might play a crucial role in the regulation of drug resistance. We also performed the analysis of methyl-site stoichiometry by normalizing the protein abundances. It was found that 89 methylation forms were determined with the significant changes in site stoichiometry, which may contribute to the development of the Bel cells into resistant cells. Our methylproteomes dataset would be useful to reveal novel molecular mechanisms of drug resistance acquired in hepatocellular carcinoma.
