Silver nanoparticle effect on Salmonella enterica isolated from Northern West Egypt food, poultry, and calves

银纳米粒子对从埃及西北部食品、家禽和小牛中分离出的肠道沙门氏菌的影响

阅读:5
作者:Helmy Ahmed Torky, Samy Abd-Elsalam Khaliel, Eman Khalifa Sedeek, Rasha Gomaa Tawfik, Ahmad Abo Elmagd Bkheet, Sawsan Khamees Ebied, Heba Said Amin, Samir Ibrahim Zahran, Hadeer Abd-Elhady Emara, Abeer Mohamad Nofal, Eman Moneer Elghazaly

Abstract

A total no. of 65 Salmonella enterica isolates recovered from food samples, feces of diarrheic calves, poultry, and hospital patient in large five cities at Northern West Egypt were obtained from the Department of Microbiology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt. The 65 Salmonella enterica isolates had the invA gene were grouped into 11 Salmonella enterica serovars with dominance of S. Enteritidis and S. Kentucky serovars. Their resistance pattern were characterized by using 18 antibiotics from different classes. Approximately 80% of the isolates were multidrug resistant (MDR). Enterobacterial repetitive intergenic consequences polymerase chain reaction (ERIC-PCR) typing of 7 strains of S. Enteritidis showed 5 clusters with dissimilarity 25%. S. Enteritidis clusters in 2 main groups A and B. Group A have 2 human strain (HE2 and HE3) and one food origin (FE7) with a similarity 99%. Group B divided into B1 (FE2) and B2 (FE3) with a similarity ratio ≥ 93%, while ERIC-PCR analysis of 5 strains of S. Kentucky revealed 4 ERIC types, clustered in 2 main groups A and B with similarity 75%. We studied the effect of silver nanoparticles (Ag-NPs) on 10 antibiotic resistant strains of S. Enteritidis and S. Kentucky. The broth microdilution minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were detected. Evaluation of the affection using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed different ratios of Ag-NPs and microorganism as well as at different contact time ended finally with morphological alteration of the bacteria. We submitted new method in vivo to explore the activity of nanosilver in chicken. KEY POINTS: • Importance of ERIC-PCR to determine the relatedness between Salmonella isolates. • Effect of silver nanoparticles to confront the antibacterial resistance. • Studying the effect of silver nanoparticles in vivo on infected chicken with Salmonella.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。