Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice

荜茇碱可减轻老年小鼠的认知障碍并改善海马功能

阅读:8
作者:Jun Go, Tae-Shin Park, Geun-Hee Han, Hye-Yeon Park, Young-Kyoung Ryu, Yong-Hoon Kim, Jung Hwan Hwang, Dong-Hee Choi, Jung-Ran Noh, Dae Youn Hwang, Sanghee Kim, Won Keun Oh, Chul-Ho Lee, Kyoung-Shim Kim

Abstract

Piperlongumine (PL), a biologically active compound from the Piper species, has been shown to exert various pharmacological effects in a number of conditions, including tumours, diabetes, pain, psychiatric disorders and neurodegenerative disease. In this study, we evaluated the therapeutic effects of PL on hippocampal function and cognition decline in aged mice. PL (50 mg/kg/day) was intragastrically administrated to 23‑month‑old female C57BL/6J mice for 8 weeks. Novel object recognition and nest building behaviour tests were used to assess cognitive and social functions. Additionally, immunohistochemistry and western blot analysis were performed to examine the effects of PL on the hippocampus. We found that the oral administration of PL significantly improved novel object recognition and nest building behaviour in aged mice. Although neither the percentage area occupied by astrocytes and microglia nor the level of 4‑hydroxynonenal protein, a specific marker of lipid peroxidation, were altered by PL treatment, the phosphorylation levels of N‑methyl‑D‑aspartate receptor subtype 2B (NR2B), calmodulin‑dependent protein kinase II alpha (CaMKIIα) and extracellular signal‑regulated kinase 1/2 (ERK1/2) were markedly increased in the hippocampus of aged mice following the administration of PL. We also found that PL treatment resulted in a CA3‑specific increase in the phosphorylation level of cyclic AMP response element binding protein, which is recognized as a potent marker of neuronal plasticity, learning and memory. Moreover, the number of doublecortin‑positive cells, a specific marker of neurogenesis, was significantly increased following PL treatment in the dentate gyrus of the hippocampus. On the whole, these data demonstrate that PL treatment may be a potential novel approach in the treatment of age‑related cognitive impairment and hippocampal changes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。